If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=A^2-18A+80=
We move all terms to the left:
-(A^2-18A+80)=0
We get rid of parentheses
-A^2+18A-80=0
We add all the numbers together, and all the variables
-1A^2+18A-80=0
a = -1; b = 18; c = -80;
Δ = b2-4ac
Δ = 182-4·(-1)·(-80)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2}{2*-1}=\frac{-20}{-2} =+10 $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2}{2*-1}=\frac{-16}{-2} =+8 $
| 4(t+7)=64 | | 2x=-0=x+3 | | 9(j+2)=63 | | 4.95+1.25n=25 | | -1=0.2x-0.5 | | f=9/5=10+32 | | -8=4x=-12+9x | | 10+5x=5x+10= | | 6-6v-8v=6-9v | | 10=9/5=c+32 | | 14/x+2=30 | | 6x15=51 | | 4+35x=21 | | 4x+5x-9=36 | | -9d=-9-10d | | 13.95x+11.95X2=93.65 | | 7u+1=99 | | -9d=-9−10d | | x+19=5+3x | | 4(s+2)=48 | | 169=2(x)^2 | | 8z+1=9z-3 | | 3(d-66)=48 | | -15x+6=-10+6 | | -(32.9)x5(x13.5)7=1 | | -2+2=-3+9x | | 8z+1=9z−3 | | -15x+6=10x+6 | | #n-1=8 | | 6x+9=-21-6x | | 64=-16m | | v=600+-25(150) |